Tuesday, July 11, 2006

 

Hybrid Technology

Honda Insight
The Honda Insight is a simplified parallel hybrid. It has an electric motor coupled to the engine at the spot where the flywheel usually goes. Honda calls this system "Integrated Motor Assist." The Insight has either a conventional, five-speed manual transmission or an automatic CVT (continuously variable transmission).

The electric motor on the Insight helps in several ways. It can:

However, the motor cannot power the car by itself; the gas engine must be running for the car to move.

To get the best mileage possible, Honda used all of the efficiency tricks discussed previously. But the Insight relies mainly on three areas:


Insight engine

· With the electric motor running, the Insight produces 73 horsepower at 5,700 rpm. If you compare that to the engine horsepower alone, it looks like the electric motor only adds 6 horsepower. But the real effectiveness of the electric motor occurs at lower engine speeds. The electric motor on the Insight is rated at 10 kilowatts (about 13 horsepower) at 3,000 rpm.

· It's the peak torque numbers that really tell the story. Without the electric motor, the Insight makes its peak torque of 66 pound-feet at 4,800 rpm. With the electric motor, it makes 79 pound-feet at 1,500 rpm. So the motor adds a lot of torque to the low end of the speed range, where the engine is weaker. This is a nice compromise that allows Honda to give a very small engine the feel of a much larger one.

The Insight is actually not very different from a conventional car once you get behind the wheel. When you accelerate, the gas engine does most of the work. If you accelerate quickly, the electric motor kicks in to provide a little extra power.

When you are cruising along the freeway, the gas engine is doing all of the work. When you slow down by hitting the brakes or letting off the gas, the electric motor kicks in to generate a little electricity to charge the batteries. You never have to plug the Insight into an electrical outlet; the motor generates all of the power needed to charge the battery.

One interesting thing to note is that in the Insight, the manual transmission is separated from the engine and motor by the clutch. This means that if you are the type of driver who likes to put the clutch in or put the car in neutral when you slow down to a stop, you are not going to get any regenerative braking. In order to recover energy when you slow down, the car has to be in gear.

Now let's take a look at the technology of the Toyota Prius. The Prius works in a very different way from the Insight.

Toyota Prius
One of the main goals of the Toyota Prius is to improve emissions in urban driving. To accomplish this, Toyota has designed a parallel hybrid powertrain, called the Toyota Hybrid System (THS), that adds some of the benefits of a series hybrid.

Unlike Honda, Toyota has focused primarily on the powertrain to achieve its emissions and mileage goals. The Prius weighs 2,900 pounds (1,315 kg) and has as much interior space and trunk space as a Toyota Corolla. Here's a layout of all the pieces:

The Prius mainly relies on two features to optimize efficiency and reduce emissions:

Toyota designed the 1.5-liter engine in the Prius to run at a maximum speed of only 5,000 rpm, where it makes 76 horsepower. Keeping the maximum speed of the engine low allows for the use of lighter components that improve efficiency.

The electric motor on the Prius is rated at 67 horsepower from 1,200 to 1,540 rpm. It produces 295 pound-feet of torque from 0 to 1,200 rpm, which is more than enough to get the car going without the aid of the gasoline engine.

The power split device is the heart of the Toyota Prius. This is a clever gearbox that hooks the gasoline engine, generator and electric motor together. It allows the car to operate like a parallel hybrid -- the electric motor can power the car by itself, the gas engine can power the car by itself or they can power the car together. The power split device also allows the car to operate like a series hybrid -- the gasoline engine can operate independently of the vehicle speed, charging the batteries or providing power to the wheels as needed. It also acts as a continuously variable transmission (CVT), eliminating the need for a manual or automatic transmission. Finally, because the power split device allows the generator to start the engine, the car does not need a starter.

The power split device is a planetary gear set (below). The electric motor is connected to the ring gear of the gear set. It is also directly connected to the differential, which drives the wheels. So, whatever speed the electric motor and ring gear spin at determines the speed of the car.


The Prius planetary gear set

The generator is connected to the sun gear of the gear set, and the engine is connected to the planet carrier. The speed of the ring gear depends on all three components, so they all have to work together at all times to control the output speed.

When you accelerate, initially the electric motor and batteries provide all of the power. The ring gear of the power split device is connected to the electric motor, so it starts to spin with the motor. The planet carrier, which is connected to the engine, is stationary because the engine is not running. Since the ring gear is spinning, the planets have to spin, which causes the sun gear and generator to spin. As the car accelerates, the generator spins at whatever speed it needs to in order for the engine to remain off. You can see all of this below:

Once you reach about 40 mph (64 kph), the gasoline engine will turn on. The generator suddenly changes speed, causing the planet carrier to turn and start the engine. Once the engine is running, it settles into a constant speed while the generator varies its speed to match the output speed with the electric motor. If you are really accelerating hard, the motor will draw extra power from the batteries. Once you are up to freeway speed, the car will move under a combination of gas and electric power, with all of the electricity coming from the generator.

Like the Insight, the Prius never needs to be recharged; the onboard generator automatically maintains the proper level of charge in the batteries.

Both the Honda and the Toyota have long warranties on their hybrid components. The Insight has an eight-year/80,000-mile warranty on most of the powertrain, including batteries, and the Prius has an eight-year/100,000-mile warranty on the battery and hybrid systems. The motors and batteries in these cars typically don't require any maintenance over the life of the vehicle (however, if you do have to replace the batteries after the warranty expires, it will likely cost you several thousand dollars). The engine doesn't require any more maintenance than the one in any other car, and because both hybrids have regenerative braking, the brake pads may even last a little longer than those in most cars.

Achieving hybrid power is certainly more complex than using straight gasoline power or straight electric power. In the next section, we'll examine why hybrid technology is so desirable, both for consumers and for car makers.


Comments: Post a Comment



<< Home

This page is powered by Blogger. Isn't yours?